Prove that $\pi(n)\leq \frac{n}{3}$ for $n\geq 33$.
Proof:According to Eratosthenes's sieve method, when $n\geq 33$,$\sqrt{33}\geq 5$.Then we delete all the multiples of the prime number 2(2 excluded),and all the multiples of prime number 3(3 excluded) and all the multiples of prime number 5(5 excluded),and 1.\begin{equation}
\pi(n)\leq n-[\frac{n}{2}]-[\frac{n}{3}]-[\frac{n}{5}]+[\frac{n}{6}]+[\frac{n}{10}]+[\frac{n}{15}]+1+1+1-1\leq\frac{n}{3}\end{equation}(Why?)